

Note:

- •All dimensions are in mm
- •Dimensions 'C' is without earth rings
- •Dimensions are with terminal box

Meter Dimensions (mm)

DN (mm)	Α	В	С
400	600	325	600
450	635	325	600
500	670	325	600
600	780	325	600
700	895	400	700
750	960	400	750
800	1015	400	800
900	1170	450	900
1000	1290	450	1000
1200	1510	500	1200
1400	1630	600	1400
1600	1830	800	1600

a. From DN400 to DN 800 : IS 1538 b. From DN900 to DN1500 : AWWA class B

*For DN1400 and

DN1600 only

ORDERING INFORMATION

Sample code explained: DN600-HR-SS316-IS1538-CS-CS-MS1010-2D-0L-RS4-RMT-U

: DIN EN 1092-1

DN 600	Size	
	DN 400 : 16"	DN 800 : 32"
	DN 450 : 18"	DN 900 : 36"
	DN 500 : 20"	DN 1000 : 40"
	DN 600 : 24"	DN 1200 : 48"
	DN 700 : 28"	DN 1400 : 56"
	DN 750 : 30"	DN 1600 :

Liner Material

Ebonite Hard Rubber : HR Soft Rubber : SR Neoprene : NE Any Other : ZZ

SS316L **Elecrode Material**

SS316L : SS316L : HAST C Hastelloy C Any Other ZZ

IS1538

Flange / End **Connection Standards**

: IS1538 AWWA Class B: AWWA DIN EN 1092-1 : DIN EN Any Other

CS	Flange / End	
	Connection Material	

Carbon Steel : CS Stainless Steel 304 : SS304 Any Other : ZZ

Body Material

Carbon Steel : CS Stainless Steel 304 : SS304 Stainless Steel 316 : SS316 Any Other : ZZ

MS1010 Flow Transmitter Type SROAT 1000A : SR1000A

MS1010 : MS1010 SR1001AP SR1001AP

Flow Tranmitter

Blind	: B		
Indication Dislpay	: 1D		
Indication and Totalisation	: 2D		

Logging

Normal Logging Extended Logging : 2L No Logging

Communication Facility RS4

RS 232 RS4 RS 485 No Communication: NA

Flow Transmitter Mounting

Integral : INT Remote : RMT

Power Supply

110 V AC ± 10%, 50 Hz : 1 $230 \text{ V AC} \pm 10\%, 50 \text{ Hz} : 2$ 24 V DC 85-265 V AC, 50 Hz Any Other

Exclusive Authorized Distributor, Stockist & Service Provider of Manas Microsystem

Regd. Office: 704, T-7, Panchsheel Works: 151, Vishnu Enclave, Opp. Primrose, Opp. Govindpuram, Govindpuram, Hapur Road, Ghaziabad Ghaziabad (U.P)-201013, INDIA

(U.P)-201013, INDIA

sales.fortunexis@gmail.com | sales@fortunexis.in 91 80767 51198 | +91 85959 51883

Automation Private Limited

Exclusive Authorized Distributor, Stockist & Service Provider of

MEGA SROAT AND SROAT 1000A / MS1010

INTRODUCTION

Series MEGA SROAT is offering large sized electromagnetic flow meters introduced by Manas. The sizing ranges from 400 mm diameter to 1600 mm diameter. These flow meters suaitable for mesurement of Raw Water containing even abrasive sand and quartz particles, mud etc. and still delivering long life. This series is also suitable for sewage applications.

FORTUNEXIS

PRINCIPLE OF OPERATION

The MEGA STROAT series of electromagnatic flow meters work on Faraday's law of electromagnetic induction. it, in brief states; 'When a conductor moves within a magnetic field, voltage is induced in it which is proportional to the velocity of conductor.

In this case the conductor is flowing media.

The equation is as below.

E = B.v.d.

where

E = Induced voltage [proportional to velocity]

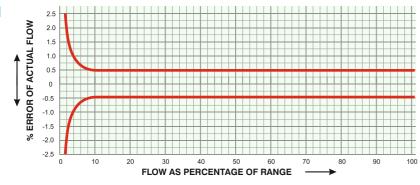
B = Magnetic flux density

v = Mean velocity of the media

d = Distance between the sensing electrodes

For a given size of flow tube and compatible amplifier the flux density 'B' is constant, the distance between the electrodes is constant. Hence, the induced voltage is proportional to the velocity of the flowing media. Thus, the meter can be calibrated in terms of volumetric flow rate by knowing the cross-sectional area of the tube.

PRINCIPAL ADVANTAGES


- •Robust, rugged, welded steel/stainless steel construction withstanding to IP68
- •Very much suitable for submerged or buried applications
- •Mesurement independent of un-dissolved solids
- •Much better accuracy compared to other types of meters in
- •No pressure drop accross the sensor, being full bore construction
- •Long lasting Ebonite rubber lining gives long life of sensor
- •End connection flanges as per customer's requirements

APPLICATIONS

Extremely useful for large water supply schemes Suitable for sewage management

Municipal water measurement schemes

ERROR DIAGRAM

SPECIFICATIONS* METERING TUBE: SROAT 1000

Meter Size : DN 400 to DN 1600

Media Pressure : PN 10

Media Temperature : 0 - 80°C

Operating Ambient: 0 - 60°C

Temperature

Material of construction

Pipe: SS 304 (non-magnetic)

Electrode: SS 316/SS 316L/or others as per

compatibility with service liquid

Liner: Hard Ebonite Ruber/Neoprene

Flanges: CS / SS304 / SS316 / SS316L

Coil Housing: MS/CS Polyurethane Painted/ SS 304 without paint / or others as

per compatibility with service liquid

Earth Electrodes: SS 316 / SS 316L / Hastelloy C or

others as per compatibility with

service liquid

: IS 1538 / AWWA / DIN or others as Flange Standard

: Pulsed DC

per compatibility with service liquid

Power Supply to

field coils

Ingress Protection : IP 68

TRANSMITTER MS1010

Min. Media Conductivity

Flow Velocity Range : 0.3 m/s to 10 m/s

16 characters X 2 rows LCD Display

TRANSMITTER SROAT 1000A / MS1010

: Remote mounted (Std)

: $\pm 0.5\% \pm 1$ mm/sec of

Power supply nominal

Temperature 27°C ±2°C

4-20 mA DC isolated in max

a) 31/2 digit, 1/2" LCD for flow rate

b) 8 digit LCD for totalisation

: Adjustable from 5 to 30 secs.

: 230V ac, single phase,

110V ac, single phase

12V dc / 24V dc, ±10%

: 0.015% / °C max. of full scale

: 90% R.H. max. non condensing

: Max. 6 no. for Remote mounting

Max. 4 no. for Integral mounting

230V ac ±10%

: ±0.2% of reading

: 0 - 50°C

600 ohms

 $\geq 5 \mu S / cm$

: 0.1 m/s to 10 m/s

50Hz ±10%

50Hz ±10%

: Al. Die cast

 $\geq 20 \,\mu\text{S}/\text{cm}$

: IP-67

actual flow rate between

Integral mounted (On request)

100% to 10% of calibrated range

TRANSMITTER SPECIFICATIONS

Type

Accuracy

Ref Conditions

Repeatability

Signal Output

Min. Media

Conductivity

Display

Damping

Humidity

Cable Entries

Power Supply

Temperature Drift

Material of Housing

Ingress Protection

Flow Velocity Range

Ambient Temperature

TRANSMITTER SR1000A

Common Specs. to both transmitters

Display (for instantaneous Flow rate, Totaliser, Engg. units,

Fault messages, etc.)

Common Port RS485 (default) / RS232 (on request),

MODBUS RTU compatible

Power Supply : 85 to 256V ac. 50Hz.

single phase, or 24V dc $\pm 20\%$

ADDITIONAL FEATURES IN SR1001AP

Communication Port : RS485 (standard) RS232 (on

request)

FLOW RATE TABLE (Flow rate at v = 1 m/s)

			(1.10)	ii iaio ai i	, 0,
	DN	M3/Hr.	LPM	LPS	MLD
	400	452.389	7539.816	125.664	10.8
	450	572.555	9542.580	159.043	13.7
	500	706.858	11780.960	196.349	16.9
	600	1017.875	16964.590	282.743	24.4
	700	1385.441	23090.690	384.845	33.2
	750	1590.430	26507.430	441.786	38.1
	800	1809.556	30159.26	502.654	43.429
	900	2290.219	38170.32	636.172	54.965
	1000	2827.431	47123.85	785.398	67.858
	1200	4071.501	67858.34	1130.972	133.002
	1400	5541.765	92362.75	1539.379	133.002
	1600	7238.223	120637.1	2010.678	173.717

HOW TO CALCULATE VELOCITY

Please refer the velocity table where flow rates at 1 meter/sec.velocity through different sizes of flow meter are given. In general through large size of meters the velocity taken is between 1 to 3 meters/sec. This also is suitable velocity range because Manas meters work confortable up to 1m/sec. full scale velocity.

SAMPLE CALCULATION FOR VELOCITY IN **FLOW TUBE**

Please refer the velocity table where flow rates at 1 meter/sec.velocity through different sizes of flow meter are given. In general through large size of meters the velocity taken is between 2 to 3 meters/sec.

Given flow rate by customer: 3000 m3/hr (Say)

Expected velocity through flow meter: 2.5m/sec. (Approx.) Flow rate at 1 mete/sec. velocity: 3000/2.5 = 1200 m3/hr. Referring velocity table, DN700 is having 1385.441 m3/hr flow

We get celocity for given flow rate through DN700: 3000 / 1385.441 = 2.165 m/sec.

rate at 1 m/sec. velocity

This is suitable velocity. Thus in this case DN700 is sutaible

Alternately, suppose the given line size is 800 NB. Flow rate is 3000 m3/hr. Velocity through DN800 flow meter,

V=3000m3/hr / 1809.556 = 1.658,/s. Where, 1809.556 is the flow rate in m3/hr., specified for 1 meter velocity through DN800 meter as per the above velocity table. This is near to our requirement of 1.5 meters/sec. This way you may find the velocity in the given line/flow meter for given flow rate. Or you may find sutaible line size / or flow meter size for given flow rate